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Analysis of a Sleep-Dependent Neuronal Feedback
Loop: The Slow-Wave Microcontinuity of the EEG
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Abstract—Increasing depth of sleep corresponds to an in- anatomical characteristics of the head. Therefore, effects in the
creasing gain in the neuronal feedback loops that generate the power plots do not necessarily reflect effects on sleep. For in-
low-frequency (slow-wave) electroencephalogram (EEG). We gance females have twice the SWP of males, but this does not
derived the maximume-likelihood estimator of the feedback gain . .
and applied it to quantify sleep depth. The estimator computes |m_pIy that they really slegp.more .deeply [5], [6]. This U”C?r'
the fraction (0%-100%) of the current slow wave which continues tainty also exists when within-subject effects on total duration
in the near-future (0.02 s later) EEG. Therefore, this percentage of NREM-sleep are studied. The amplitude (or power) thresh-
was dubbedslow-wave microcontinuit(SW%). It is not affected  glds that are involved in the computation of durations depend
by anatomical parameters such as skull thickness, which can 5154 on nonsleep-related processes: the power thresholds corre-

considerably bias the commonly usedlow-wave powe(SWP). . L .
In our stl};dy, both of the e)s/timators SW% F;nd (SWP )Were spond to different sleep depths in different subjects.

monitored throughout two nights in 22 subjects. Each subject  These nonsleep-related effects can be partly avoided by ap-
took temazepam (a benzodiazepine) on one of the two nights.plying relative power measures, such as the percentage of the
Both estimators detected the effects of age, temazepam, and timetotal power that is in the slow-wave frequency band, or the ratio

of night on sleep. Females were found to have twice the SWP of ; 2 .
males, but no gender effect on SW% was found. This confirms of powers in the slow-wave and alpha band. However, it is not

earlier reports that gender affects SWP but not sleep depth. clear how such a ratio vyould be related to real, physiological,
Subjectively assessed differences in sleep quality between thesleep depth. Also, relative power measures are based on fre-
nights were correlated to differences in SW%, not in SWP. quency analysis, which implies a rather limited time resolution
These results demonstrate that slow-wave microcontinuity, when compared to the frequent and abrupt sleep depth varia-
being based on a physiological model of sleep, reflects sleep depthiyns that can occur in, for instance, sleep apnea patients.
more closely than SWP does. Some physiological models of NREM sleep [7]-{9], [4]
Index Terms—Aliasing, EEG, estimator, sleep, temazepam. suggest a different method that would not suffer from these
drawbacks. These models describe how NREM sleep depth is
related to the neuronal mechanism that generates slow waves.
This mechanism is essentially feedback through closed loops
S:EEP consists of periods of rapid eye movement (REM) neuronal networks and/or through the interplay between
Jand non-REM (NREM) sleep. The depth of NREM sleepyn currents in single cells. It is suggested that NREM sleep
varies between and within NREM periods. These variations Gépth modulates the gain of the feedback loops [9]. According
NREM-sleep depth are accompanied by synchronous variatiQgshis model, thesleep-relatedsariations in SWP result from
of the amplitude of the low-frequency component of the EEGgriations in the feedback gain. Therefore, a direct estimate of
usually called the slow wave. slow-wave feedback gain would be most closely related to real
Because of this, quantitative studies of NREM sleep are copwysiological sleep depth. In particular, this estimate would not
monly based on slow-wave power (SWP) [1]-[5]. However, thes piased by the nonsleep-related anatomical parameters that
SWP as measured through scalp EEG electrodes can alsqi§®ias SWP. Also, because the models are in the time domain,
influenced by processes that are not related to sleep, such@sestimator would not be limited by the time resolution of
frequency analysis.
In this article we describe for the first time the model-based
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practical value of the estimator, we monitored slow-wave feed- W(t) ~ u(t) e(t)
back gain as well as SWP throughout two nights in 22 subjects >+ > L(f)

having sleep complaints. We analyzed whether slow-wave feed-

back gain: 1) reflects sleep depth variations that are also visible p(l‘) S(t)

as variations in SWP caused by the ultradian rhythm (time of G(f) X

night), aging, and the use of sleep medication; 2) reflects the

(possibly not-sleep-related) gender effect Olt] SWP. We al_so COHY. 1. Model of the neuronal generation of slow-wave EEG. Neuronal-group
pared the results to those that can be obtained by relative SWRity under the electrode is represented byt). G(f) represents
analysis. frequency-selective neuronal feedback pathways that can carry the slow-wave

. . . . . - mponents(t), of this activity to the near-future activity under the same
A_n |r_nportant ISsue In slee_p medicine is the co_rrelat|0n _(if’ectrode. Sleep-dependent activation of these pathways is represented by the
subjective measures (as derived from sleep quality questi@sedback gainp(t). Stronger activation corresponds to largeit), which
naires) with the total duration of NREM-sleep, as computéﬂi‘k?@ aT|?]fger ftfaCti(IJ“_ of ”t]e S{Q‘{V&V"tav'fhcompftme“? continue i”t”c‘jebneaf‘fgtwe

. . . ctivity. The external input activity to the system is represented by random

by, for 'nStance’. thresholding overnlg.ht.S\.NP. PIOtS' To da hite noise(t). L(f) andx describe how the activity under the electrode
no such correlation has been found within individuals: the oB-low-pass filtered and attenuated, respectively, before it is recorded as scalp
jectively measured total duration of NREM-sleep does not yEEG. ¢(?).

support the difference between a (subjectively) good and a bad

night in one subje(_:t. I_n our view, this may be partly (_Jlue to th_ﬁgnal passes a low-pass filtdi(f), and a not-sleep-related
fact that thesg objgctlve measures QO not use the '”format!%ﬂplification factor,z, before being recorded as scalp EEG,
from the physiological models mentioned above. The analygig) A similar model was proposed earlier [16] for the alpha
of slow-wave feedback gain, being based on a physiologiGglthm in the EEG. Simulations by the model [10], [14], [16]
s[gep model, might show correlations not revealed by more t@oy a waxing and waning rhythm, similar to the behavior of
ditional measures. We have, therefore, also analyzed whethgF ow-band filtered white noise. Increasing sleep depth was
the subjective difference between the two recorded nights Wasylated by increasing(¢) while keeping all other parameters
correlated with the difference in NREM-sleep duration as corggnstant. Therefore. the model is stationary exceptpfoy

puted by thresholding slow-wave feedback gain plots. SinGgpich is to be estimated. The simulations were visually nearly
in this study, temazepam was taken on one of the nights, tTHEistinguishable from real EEG.

analysis essentially determines whether those found by objecTne resonance filtet7, is linear, with the following transfer
tive measures to be drug responders are also the respondekg @Sion in the frequencyf) domain:
determined by subjective measures.

a(f) with v (f) = 22 (i - @) M)

B \fo .
[I. THE FEEDBACK MODEL: GENERATION OF SLOW WAVES IN / /
THE EEG wherej is the complex operator, anf§ = 1 Hz andB = 1.5
Hz are the center frequency and bandwidth, respectively. The
The derivation of the feedback gain estimator is based onresulting—3 dB frequencies of the resonance filter are 0.5 Hz
simple mathematical model of the slow-wave generating feeghd 2 Hz. The roll-off at both ends is only 6 dB/octave, which
back system. This model describes three essential charactéfiplies that a considerable part of the signal below 0.5 Hz and
tics of the above-mentioned physiological models: 1) the exighove 2 Hz is also passed. These settings roughly correspond to
tence of a low-frequency feedback loop in which the feedbaghe frequency content of slow waves. They also result in sim-
gain is proportional to sleep depth; 2) unpredictable activitylated signals and power spectral densities that best resemble
from external sources drives the loop; 3) increased feedbaplyse of actual EEG recordings [14]. Note thi#tf,) = 1, and
gain corresponds to larger SWP. These characteristics carah@ther frequencies are attenuated as well as changed in phase.
implemented in various practical mathematical models. Phygihe equivalent notation in the complex-frequerigy= ;27 f)
ological knowledge does not provide clear criteria to select b@omain reads
tween these models. Therefore, we have implemented a variety
of models, based on the three above mentioned characteristics. (s) = 2w Bs _ 2w Bs
The models differed in types of low-frequency filters in the feed- s24+21Bs+ (27 fp)2  (s+a)-(s+b)
back loop, in random processes driving the filter, and in locatianith

T 1+5-Y())

of the feedback gain. We selected the model that most realisti- o= [B + /B2 = (2f,)2 (2f0)2] and
cally simulated EEG. '
Fig. 1 shows a block diagram of that model. Standard white b= [B —+/B?% - (2f0)2] . (2)

noise, w(t), drives a feedback loop containing a resonance

filter, G(f), and a feedback-gaim(t). This feedback gain In all our applications we havB < 2f,, which makes: andb
represents sleep depth. The feedback loop produces an ougiamhplex constants. In the tin{¢) domain, the resonance filter
signal,(t). The resonance filter passes only the rhythmic (i3 specified by its impulse response function:

this case, the slow-wave) componett,), of this output signal.

The feedback gain determines which fraction of this component h-e~bt —q.e—at

actually continues in the near-future output signal. The output 9(t) = 2nB - b—a : ®)
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In the open-loop situation, i.ep(t) = 0, the filter produces the  In the general, closed-loop situation, the filter produces the
rhythmic component(¢), by convoluting the white-noise input rhythmic components(¢), by convolutingi(t) = (du(t)/dt)as

as follows: follows:
0= [ gt-m i) ar = [ at=mitr)-dr
= /t g(t — 1) - dw(T). 4) = /r:—oo g(t —7) - du(T). @)

According to Fig. 1, this rhythmic component is amplified by
The last part of this equation is a Wiener integral involving ina gain factorp(t), before being added to the new noise input,
crementsdw(7), of the standard Wiener process(t). The w(t), thus producing the new output signalt), of the closed
formal derivative of this process is the white Gaussian noideedback loop. Soi(t) = p(t) - s(t) + w(t). The equivalent
(dw(t)/dt) = w(t), which is in the first part of the equation.formulation based on Wiener increments reads
White Gaussian noise has infinite power and bandwidth, which
would complicate the formal derivation and a straightforward du(t) = p(t) - s(t)dt + dw(t) (8)
discretization of the analyzer. The Wiener process has finite
power. Its incrementsy(t + A) — w(t), are mutually inde- in which the forward incrementw(t) = w(t + dt) — w(t) is
pendent and simply have a Gaussian distribution with mearin@lependent of(¢) because the latter results from a causal feed-
and variance\ [18, chapter 1]. These properties enable simpleack filter accumulating only previous increments: see equation
and straightforward derivation of the analyzer in paragraph 1(5). This does not affect the simulated signals because these re-
A Wiener integral is formally defined as the limit of approxi-sult from convolutions in which the contribution of the most re-
mating discrete-time sums, in this case as follows [18, chapt&nt incrementdw(t), is infinitely small. Physiologically, the
4.3] provision makes sense because the neuronal feedback pathways

will surely involve a time delay. Observing.(t) is equivalent

to observing the EEG;(t), because the filtef(f) is known.

t
s(t) = / gt — 1) - dw(T) Therefore, from now on, we designate(t) to be the observa-
T=—00 tions and (8) is the observations model.
= We will now describe some characteristics of the model in
- ilglo Z g(NA —kA) - [w(kA + A) —w(kA)]. the frequency domain. The closed-loop transfer function from
h=reo 5 w(t) tou(t) depends op(t). For constanp(t) = p, it reads as
®) follows in the frequency domain:
This formulation provides clear suggestions on how to imple- U(f) = 1 ) (9)
ment the continuous-time components of the model in discrete 1—p-G(f)

time (Section Ill). For these two reasons, we have based the . . . .
( ) HH the model, this transfer function is driven by standard (i.e.,

model formulation as well as the derivation of the analyzer %avin a power spectral density of 1) white noisg). There-
Wiener incrementsjw(7). A more detailed and complete dis- gap P Y '

cussion on this subject can be found for instance in [18, chaptfa%e’ the power spectral density of the outpi(t), equals

1, 4 and 6.5]. , 14 Y2(f)
The open-loop power of(t) can thus be derived as follows: [U()] =2 V) (10)
Pyt lp(t)=0 = E[s*(t)|p(t) = 0] Forp = 0 (no feedback), the power spectral density is flat. For
. 2 p = 1, it has an infinite peak afy. For any value op, Y (f) be-
—E [/ g(t — ) dw(r) comes infinitely large at very low or very high frequencies, so
r=—00 the power spectral density at those frequencies equals 1. With
t 9 9 f going to fo, Y(f) goes to O and the power spectral density
= ./T=_oo g°(t = 7)Eldu(r)] monotonously rises to a peak valuelgf(1 — p)2]. This shows
t that our choice of7( f) produces only peaks in the power spec-
= / g (t —7)dr trum, and no dips. This is consistent with actual EEG power
T~ spectral densities, which also consist of a fairly smooth baseline
- / ¢*(r)dr =B (6) spectrum that can show peaks (for instance, at alpha, spindle or
=0 slow-wave frequencies) that are not accompanied by a decrease

of the spectrum at other frequencies. This fact is a major ar-
in which E denotes the expected value operator. Note, that thement for our particular choice of the feedback fil&ff).
fourth equality in (6) is true because of the above-mention@&ifferent filters, such as delay lines or higher-order resonance
property of the Wiener increments: the variancelef r)over filters, can also produce peaks in the spectrum but these are al-
an intervaldrequalsdr [18, chapter 4.3]. ways accompanied by dips at other frequencies.
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The closed-loop transfer function frodn(¢) to s(¢) reads s(kA) is produced by a causal feedback loop while(kA)
is defined as a forward increment with respectite= kA.
S(f) = G(f)-U(f) = G(f) _ 1 ~ We finally assume that the initial statg(0), of the feedback
: : : 1-p-G(f) 1-p+j-Y(f) filter, G(f), is known so that its output(kA), can be updated
(11) on-line from the input,Du(kA — A). The likelihood of
[Du(kA): 0 < k < N — 1], which is of the observations
This transfer function is identical to the open-loop transfer funover the full interval, given the value of, can be factorized
tion of (1), except that the bandwidth - (1 — p) instead of according to Bayes’ rule [18, Ch. 4.5] into a product of, in this
B, and the gain afy is 1/(1 — p) instead of 1. Therefore, the case Gaussian, distributions
closed-loop power of(¢) can directly be deduced from (6). It

equals f[Du(kA): 0 <k <N —1[[(0), p]
N—-1
Pt imrey = ;T_B 12) = [] [Du(kA) |[Du(mA): 0 < m < K], T(0), p]

—p h
Finally, the outputy(t), of the closed loop passes a first-order N-1
low-pass filter and an unknown constant amplification factor, = H [Du(kA) [s(kA), p]
, resulting in the EEGg(t). The factorz affects EEG (and ]’;:01
slow-wave) power and represents biological attenuators (such

as the skull), electronic amplifiers, as well as the possibility that — 1:[0 [\/m
the white noise input is stronger or weaker than standard white *—

-exp[— [Du(kA) — p - s(kA) - A]? /2AH

N-1
noise. The transfer function of the low-pass filter reads [16] ~ _ _ 1 o ZIDWEA) — - s(EA) - AI2/2A
- omn o L |2 [Dulkd) —p-s(ha) - AT24].
e
L(s) = —— 1 15
()= ST (13) (15)

For the third equality, we have used (14) and the Gaussian dis-
tribution of Dw(kA). The value ofp that maximizes this likeli-
hood, maximizes the sum in the last line of this equation. There-
fore, the maximume-likelihood estimataqt, is the value op for

which the derivative of this sum with respecttequals 0. This
The model’s feedback gaip(t), represents sleep depth. Wesglye is

will, therefore, quantify sleep depth by estimating the feedback

wheref. = 1.8 Hz is the—3 dB cutoff frequency.

I1l. M ODEL-BASED ESTIMATION OF THE NEURONAL-FEEDBACK
GAIN: SLow-WAVE MICROCONTINUITY

gain. The discrete-time maximume-likelihood estimator can be Nzl [s(kA) - Du(kA)]

derived as follows. Discrete-time intervald, are 0.02 s in =

the present application (EEG slow waves), corresponding to a b= N1 . (16)
sampling frequency of 50 Hz. This frequency is sufficiently s2(kA) - A

high for an accurate representation of the slow-wave compo- pard

nent. Selecting still higher sampling frequencies increases the . . . . .
risk of bias by unknown technical of physiological high-fre-SUbSt'tUtngu(kA) from (14) into (16) shows that indegd

quency filters that are not accounted for by the model. The cdfvVerges @, because(kA) and Dw(kA) are mutually in-
tinuous-time observationgx(t) over an intervab < ¢ < T, dependent. In Sections IV andjs expressed as a percentage,

are sampled with sample countér,resulting in discrete-time SW%' h h hat i ired
observationsDu(kA) = u(kA -+ A) — u(kA) over an interval Fig. 1 shows how to reconstru_ﬂu(kA_) that is require
[0 < kA < NA — A], with NA = T. We assume for the mo- fOF the computation of (16). Applying the inverse bfs), that

71 . . .
ment (see Section IV) that this interval is short when comparél~ (8). to the EEG and subsequent integration would give
to the dynamics of(t), so thatp(t) = p|0 < t < T. We fur- & u(t). The dlscrgte—tlme equwalept,- u(kA), is obtained
ther note that the sampling interva, is short when compared 2Y @PPlying the bilinear transformation [19], [20, chapters 4.0

—1 .
to the slow-wave frequencies (being around 1 Hz), so that W d 5.1.3] toL (S)/‘.S' Subtractmg subseq_uent samples_co_f
kA) then results in the following algorithm for obtaining

assume that(t) = s(kA) inthe interval[kA — A <t < kA]. ¢
The discrete-time equivalent of the model is then obtained By
integrating (8) and reads

Du(kA) from the EEG samplesg(kA):

x - Du(kA) =co - e(kA 4+ A) 4+ ¢1 - e(kA) with

Du(kA) = p- s(kA) - A + Dw(kA) (14) co =A/2+1/(2mp.) and
1 =A/2—-1/127p.) a7)
in which Dw(kA) = w(kA + A) — w(kA) is the increment
of the standard continuous-time Wiener process), over the in which ¢. is the prewarped. [see (19)].
time incrementA, and, therefore, has a Gaussian distribution Fig. 1 also shows how to reconstrugttA) that is also re-
with mean 0 and varianc&. As in the continuous-time model, quired for the computation of (16). Applying the inverse of
the incrementsDw(kA)are independent of(kA) because L(s), thatisL~!(s), to the EEG and subsequent filtering by



KEMP: ANALYSIS OF A SLEEP-DEPENDENT NEURONAL FEEDBACK LOOP 1189

G(s) would givez-s(t). The discrete-time equivalent;s(kA), Finally, z - s(kA + A/2) is estimated by linear interpolation as
is obtained by applying the bilinear transformation/to*(s) - follows:

G(s). The transformed filter for obtaining - s(kA) from the
EEG samplesg(kA), reads EA) +z - s(kA + A)

2

v 5(kA + A)2) = 25 (1)
xz-s(kA)=ay-z-s(kA—A)+ay-x-s(kA —2A)

and replaces(kA) in the computation of equation (16).
+bo - e(kA) + by - e(kA — A) + by - e(kA — 2A) places(kA) P d (16)

Equation (21) predicts the slow-wave component produced
by G(s) that might enter the next observatiabu(kA). The
with fraction of this component that will actually entBru(kA) de-
pends on the feedback gaijm, Equation (16) estimates which
) fraction of the slow wave component continues (through the
a1 =[8 = 2(2mpoA)”] feedback loop) into the next observation. This is why we have

/[4+ (2mpoA)? + AT BA] named this fraction the slow-wavenicrocontinuity” (SW%)
ay =[—4+ 47 BA — (2rpoA)?) Accordipg to Fhe _model, this is an estimate of the neurtesd-
4+ (2700A)? + 4w BA] back gain whlph is rglated to sleep depth. -
i In some biomedical research environments, anti-aliasing
bo — 47 B |+ 1 —|—A} measures are take_n routinely and unconditionally in appli-
TPe cations in which signals are sampled. We have purposely
not done this, and we want to explicitly state our reasons in

2
/14 + (2mpol)” + A BA] the following. Pre-sampling anti-aliasing filters would color
b —drB '_ 2 the noise: they make the mutually independent increments
L= TPe dw(kA) in du(kA) depend on previous increments and,

5 therefore, ons(kA). As mentioned earlier, this would bias the
[[4+ (2mpoA)” + dwBA] estimator. A similar effect occurs if the sampling frequency
1 is too high: high-frequency low-pass filters that are present in
by =4AnB +7wc - A} any electronic and physiological system would also color the
i ) white noise. In practical applications, such bias by anti-aliasing
[lA+ (2mpoA)” + 4w BA] (18) filters can be substantial [10], [12, chapter 6.1]. Also, because
any additional EEG rhythms are below 20 Hz, there is very

from the original frequencieg, as follows [20, pages 208 and This decision is supported by the fact that the formally de-
217] rived optimal estimator does not include anti-aliasing filtering.

In order to understand this better, we have verified how the an-
_ lyzer processes frequencies exceeding the Nyquist frequency
=t A))/mA. 19) @
o = [tan(rfA)]/m (19) (in this application 25 Hz). These frequencies are much larger
than fy and f. (1.0 Hz and 1.8 Hz, respectively). At these fre-
rc[[uencies, the feedback throug@hi /) hardly contributes to the

known factorz occurs in both the numerator and the denom Jutput signal and the_ I(_)w-pass filtes( £), 3“5 asan integrator._
nator of (16), this does not influence the estimate. For the sal Iéerefprte, _the retmamlngt.EEGTrr]nod?I S'Tﬁly mtelgrat?éé/vcljlfe
reason, scaling and calibration of the EEG signal is not requir _|se,w( ). in continuous time. Therefore, the resulting '

The estimator of (16) basically computes which fraction Offnitgrfc%r?g:f;;ugﬁgs \slll;tnse\:vﬁ;ongns [Illr? irr:izpt(recr):e.i]s. ZES
the present(kA) is presentin the future incremeu(kA) = y y ping P

w(kA + A) — u(kA). There is a time delay of\/2 between filtering the gamples by equations (17) and (18). Becausg
. . . . 1/mp., the filter parametersy = —c¢; andby = —2b; = bo.
s(kA) and Du(kA). This effect slightly biases the estimator’ . 7’ " ) ) . o
. . . . This implies that both filters first compute the discrete-time in-

because, in practice(kA) is not completely constant during

tis imerval. Extrapolating () by 8,2 nto the fuure re- TERIE TR R B0 R T R
duces this bias. This extrapolation must not invalyeA + A) '

because that would cause dependency on the white noise C%nmu_ous-nme Wiener process(), and therefore, by definition,

; ; Iscrete-time white noise [18, chapters 4.3 and 4.4], which is
ponent of Du(kA). As mentioned with (16), such dependenc o ; ) !
would bias the estimator. Therefote; s(kA + A/2) was es- %xactly limited to the Nyquist frequency. The gain of filter (17),

timated as follows. Firsty - s(kA) is computed by the filter 1/2x f., exactly compensates the gain of the continuous time

of (18). Then, the same filter is extrapolated Ayand without |ntegrator,2.7rfp. Therefore, the standgrd wh|te_ nmsét), n-
input signal, in order to prediat - s(kA + A) as follows: the model is replaced by standard discrete-time white noise,

Du(kA)/A in the analyzer. Both have a power spectral den-
sity of 1. This shows that the first-order roll-off of the contin-
z-s(kA+A)=ay-z-s(kA)+as-x-s(kA—A). (20) uous-time low-pass filtef.(s), followed by the sampling and

The reconstructed- Du(kA) andz-s(kA), and notDu(kA)
ands(kA), are used for the computation of (16). Since the u
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discrete-time filtering, acts as a perfect anti-aliasing filter on thaultiplied the result by 100 in order to express the estimated mi-

white noise component. crocontinuity as a percentage
t(n—1)4+SU(n)
IV. SMOOTHING, ARTIFACT REJECTION AND (RELATIVE) SWY - 100 - SU*(n 25
POWER A(n) SStn-1)+ 55 (n) &

Equation (16) shows that smoothing must be applied sephe smoothed estimate of the power of the rhythmic component
arately to numerator and denominator of the estimator. Sughapplied in this article is computed in a similar way as follows:
smoothing is not essential to the theory: the basic time reso-

lution of the analysis equals the sampling interval (for an ap- SWP(n) = [SST(n— 1)+ SS~(n)]/2. (26)
plication, see [10]). In particular, the time resolution of the es-

timator is not limited by the low-frequency content of the slow s computation of power is rather traditional: the bandpass fil-
waves. However, in the present application, some smoothing G8fing of (18) from 0.5-2 Hz is followed by the squaring of (22)
be applied in order to reduce the noise which is introduced By,q smoothing [Equs. (23), (24), (26)]. Itis influenced [see (22)]
dw(t), while still preserving the dynamics pft). We have tried py the amplification factorz, which can introduce individual
several smoothing principles and obtained the best results {'énsleep-related effects in the EEG (Fig. 1). For well-smoothed

with the following recursive smoothers. Theoretically [22], sucBstimates this influence can be derived from (12). It reads
smoothers are optimal #(¢) represents the state of a Markov

chain. The recursive smoothing procedure is as follows. B - 22 7B - z2-100%
Using.the reconstructed model signals of (17) gnd (21), the SWP(n) = 1—p(n) = 100% — SW%(n)” (@7)
summations in (16) were computed over each 1s interval (with

interval counterp), i.e., This equation shows that the power, SWP, is composed of a
nonsleep-dependent fact&W0 = =B - 22, multiplied by
SU(n) = C3(EA 4+ AJ2) - 2 - DulkA a sleep-dependent factor, 100%/(100%—-SW%). According to
(n) Z [o- 3(kA+A/2) - 2 Du(kA)] (27), the nonsleep-dependent factor can be estimated at each
SS(n) =Y [z-3(kA+A/2)] - A (22) secondy, from SW% and SWP as follows:

100% — SW%(n)
100%

These sums were recursively smoothed forward in time, starting SW0(n) = SWP(n) - (28)
at the beginning of the EEG recording
The automatic artifact rejection algorithm assumes that EEG
SU+(n) =(1—7)- SU+(n — 1) +7-SU(n) acti\_/ity behaves ac<_:0_rding to the model and artifa<_:ts do not. In
SSHm) =(1—1)-SST(n—1)+7-SS(n)  (23) particular, EEG activity should obey model equations (8) and
(12), which implies that (with integrations over 1 s intervals and
E being the expectation operator)
and also backward in time, starting at the end of the EEG

recording [/ s(t) dt — /s(t) du(t)]
o Ty =P P [roa- [awan

:(1—p)~E[/32(t)dt]

Initial values were set to 0. The contribution of each second of
=7B (29)

data, SU(k)and SS(k), to the smoothed results decays by a
Lactor Of(1 -~ r) at each recursion. SJlermmg the fo_rwardly angvhich is independent of the value pft). The discrete time
ackwardly smoothed paramete$$/ ™ (n — 1)+ SU~(n) and ; X S
§S+(n—1)+S55—(n), results in a time-symmetric weighted av_equwalent includes the unknown amplification factey,and
erage at time n over all recorded data. The weight decays ex{‘)(?)"j-Ids
nentially with increasing distance from n. The smoothing effect E[SS(n) — SU(n)] = 7B - 22 (30)
becomes weaker with increasing ratelhe data in this article
were computed using the rate= 0.016 66. For this value of;, Most artifacts do not behave according to the model and have
both (forward and backward) smoothers have a window sizelzden found to makéSS(n) — SU(n)] differ strongly from
In(0.5)/In(1 — r) = 41 s. That is, data farther than 41 s awayrB - z:2. Therefore, we designed the automatic artifact rejec-
from n weigh less than 50% of the dataratFor severe sleep tion procedure as follows. The express[6f$(n) — SU(n)] is
apnea patients, who may enter deep sleep in a few secondspmputed at each second, A whole-night histogram of the
higher rate is probably more appropriate. We have replaced titgained values always shows a clear peak, which we interpret
summations of equation (16) by these time-symmetric recursigs the expected value of the expression and, therefore, equate
smoothed parameters. This results in better noise reduction avith 7B - 2. During high-frequency artifacts such as EMG the

preservation of the dynamics of the feedback gain. We have alsdues obtained are positive and usually exce&d- =2 by at
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least9n B - 22 (they are at leastOr B - 2). During low-fre-
quency artifacts such as moving electrodes the values obtair
are negative and usually excee® - 22 by at least-97 B - x>
(they are more negative thar8z B - 22). These thresholds at
7 B-224+97 B-2% were determined experimentally in a previous sgg
unpublished study using other recordings. Artifacts are autom:
ically detected when a threshold is crossed. When an artifact ﬂJ
detected, the inputs,U (n) andS S(n), to the smoothers of (23)
and (24) are set to zero. This makes these smoothers interpo g,
between the adjacent artifact-free periods.

In order to compare our results to those that can be obtain |ig
by relative-power analysis, we computed power spectr
density at a 1-minute time resolution as follows (frequerfcy,
and minute counter)). FFT-based power spectral density gy
PSD(M, f), was computed by 10.24 s intervals and average
over six intervals (the last one truncated in order to arrive . s~
exactly 60 s). Relative SWP plots, RSWPs and RSWPw, bas psee
on a small and a wide slow-wave frequency band respective

were computed as follows. ] -
2.0 Hz S M
> PSD(M, f)
108

E

RSWPs(M) = 202
> PSD(M, ) p ~—~
f=0.5
and 168/ 188-Sk"1
4.0Hz
> PSD(M, f) 15 |
_ f=0.25
RSWPw(M) = S : (31) %JM%M%
> PSD(M, f)
f=0.25 Fig. 2. The seven-hour sleep period of a male, aged 20, under placebo

condition (sleep-wake recording 7141/94). From top to bottom six charts, each
one with solid bars indicating the REM sleep periods. Chart 1: EEG (PzOz),
SWP, in ¢:V)2. Chart 2: EEG slow-wave feedback gain, i.e., SW%, which is
the fraction of the present slow wave that is transferred to the near-future EEG.
Chart 3 (top trace): SWO0 in«(V)?, the part of the SWP variations in chart 1 that
V. SLOW-WAVE MICROCONTINUITY COMPARED TO the model could not predict from SW%. Chart 3 (bottom trace) illustrates that
SLow-WAVE POWER EFFECTS OFTIME OF NIGHT, dynamic attenuation of the EEG amplitude by the square root of SWP (chart 1)
AGE, GENDER, AND TEMAZEPAM removed all variations from the resulting SWP, SV@Part 4: EEG slow-wave
feedback, SW%computed from the thus dynamically attenuated EEG. Note

. t despite this attenuation, charts 2 and 4 are identical, which implies that
In a study [23] of the pharmacodynamics of temazepam ?5/% only depends on EEG shape, not amplitude. Chart 5: neuronal power

benzodiazepine which promotes NREM-sleep duration), EEGriations as reconstructed by model equation (27) from Swehart 4. Note
(PZOZ derivation) was recorded throughout two nights in 2bat charts 1 and 5 are almost identical, which implies that the original neuronal
. L " wer variations are almost fully coded in the shape of the EEG. Note also
SUbJeC_tS' The recorder was a digital telemet_nc system [2% m the scales of charts 1 and 5 that #iesolutevalues of neuronal power
[25] with frequency response range (3-dB points) 0.03—10@6uld not be reconstructed because of the unknown factéwe assumed
Hz, 14-bit sampling at 100 Hz per signal, and a total nois&/Vo(:) = 1 in the reconstruction). Chart 6: traditional manual classification
. &K) into (from top to bottom) the six sleep stages: Wakefulness, REM sleep
level of 241V p-p. The SUbJeCtS were grOUpEd by age a old), drowsiness, and the increasingly deep NREM sleep stages 2, 3, and 4.
gender (F: females, M: males) as follows: 18-34 years (G¥ote that removing all power variations from the EEG (chart 3) did not affect
4M), and 35-78 years (9|:, 3|\/|)_ Each subject took 20 m?e dynamics of nji_crocontinuity (_chgrt 4). Note also that the model can even
of temazepam on one of the two nights (randomized, doutfgonstruct the original power variations (chart 5).
blind, cross-over). Sleep stages were scored manually, using
additionally recorded signals, and according to the standardrFig. 2 illustrates that the well-known night-time dynamics in
scoring rules of Rechtschaffen and Kales [17]. SWP are fully coded in SW%. Charts 2 and 4 illustrate that
The slow-wave analyzer automatically monitored at a 1 s tin®V% depends only on the shape of the EEG, not on amplitude:
resolution the SWP (26) and its two components; the sleeghart 2 shows the microcontinuity as computed directly from
dependent SW% (25) and the nonsleep-dependent factor (28¢ EEG while chart 4 is computed in the same way but after
SWO0. The result was a SWP, SW%, and SWO0 plot for eadttenuation of the EEG by the dynamic SWP plot. This attenua-

recorded night (Fig. 2). tion completely removed the power fluctuations from the EEG
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(see chart 3). Still, charts 2 and 4 are identical. This implies TABLE |

0 e i i - GNIFICANCE LEVELS OF THEEFFECTS OFAGE, GENDER AND TEMAZEPAM ON

that SW9% analySIS. IS m.deed mdependent of the EEG am%OLE-NIGHT MAXIMA OF BOTH RSWPsAND RSWPw, SWRAND ITS TWO

tude and that the night-time dynamics in SWP are fully codedcomponents SLow WavE FEEDBACK (SW6) AND NONSLEERRELATED

in the microcontinuity (shape) of the EEG. The latter is alSCATTENUATION (SWO). NOTE THAT TEMAZEPAM AND GENDER AFFECT SWP
. 0,

demonstrated by chart 5. This chart shows that the model caff*CtUSIVELY THROUGH SW%AND SWO, RESPECTIVELY. AGE SEEMS TO

. . AFFECTSWP THROUGH BOTH SW%AND SWO0
reconstruct the original neuronal-power fluctuations even after

removal of all EEG-power variations! RSWPs | RSWPw [ SWP__ [ SW% [ SwWo
These illustrations are consistent with the model, which Age .26 15 001 | .01 04
dicts that S| lated i in SWP d by Sender 22 77 .01 5 .01

predicts that sleep-related variations in are caused DY Tomazepam [ .59 51 005 005 =1

variations in slow-wave feedback, SW%. Objective validation

of this prediction was based on computation of the whole-night

correlation between the SW% and SWP plots in each subject. TABLE I

The relationship (28) between SW% and SWP is nonline QUESTIONS FORASSESSINGSSQ. THE ORIGINAL QUESTIONNAIRE WAS IN
. . . . aIBUTCH. AFTER EACHPOLYGRAPHIC SLEEP/WAKE RECORDING, THE SUBJECT

which would bias the co.rrelat!on anal}’s's .(and_also ANOVANNswERED EACHQUESTION BY MARKING THE “Y ES’ OR THE “NO” BOX. IN

[6]). Therefore, the relationship was first linearized by loga- THE ExAMPLE BELOW, THE MARKINGS WERE MADE BY A “PERFECT'

rithmic transformation as follows: SLEEPER RESULTING IN THE MAXIMUM SSQOF 16

yes | no
| slept deeply last night X
| feel | slept very badly last night

| was awake more than half an hour before falling asleep last night
| woke up several times last night

1
2 X
3 X
4 X
. .. 5 | After waking up this morning, | felt tired X
According to the model, the variations In[SWP(n)] and  ~57idid not have enough sleep last night X
7 X
8
9
10

100% — SW%(n)
100%

In[SWP(n)] = In[SW0(n)] — In . (32)

In[(100%—-SW%n))/100%)] should be highly correlated. 7 |!gotoutofbed lastnight

. . . .. After waking up this morning, | felt well-rested X
In order to test this, the whole-night correlation coefficier ~g{ifeellslept only a few hours last night X
between these logarithmically transformed plots was comput

| feel | slept well last night X

R 1 | 1 did not sleep a wink last night X
for each of the 44 recorded nights. The mean, the 95%-C( 12 fell asleep easily last night X
: H H H H 13 | | woke up last night and could hardly get back to sleep X
fidence interval of the mean (both obtained using the Fish ™| /00 & o wake up at all ast night, answer 'no)
Z-transform) and the range of this correlation coefficier 141 was restiess last night X
15 [ | had less than five hours sleep last night X
were found to be 0.961, (0.954 to 0.967), and (0.89 t0 0.9¢ 357y sieep was affected by the recording x

respectively.

The effects of age and temazepam on SWP are at least partly
due to a real effect on sleep depth [6], [23]. Gender also gfersonal assessment of sleep quality [26], [27]. However,
fects SWP, but probably not sleep depth [5], [6]. In that casan intra-subject correlation between the effect on the sub-
SW% should only show the effects of age and temazepam.jéctive sleep quality and the effect on the total duration of
order to test this, we analyzed the effects of age, temazep&REM-sleep has never been reported. This may be due to the
and gender on maximum sleep depth. The moment of maximdact that these durations were commonly computed through
sleep depth was detected from the SWP-plot: it is the momehtesholding overnight SWP plots or manually scored sleep
where the SWP-plot (for an example, see chart 1 in Fig. 8)age plots [17]. Both plots depend on SWP which is also
reaches its largest value. Maximum sleep depth is characteffuenced by nonsleep dependent factors as mentioned in
ized by the linearized (see above) values IN[SWP], IN[SWO0] ai8kctions |, Il and IV. Fixed power or sleep stage thresholds then
In[(100%—-SW%)/100%] at that moment. For comparison, magerrespond to different sleep depths in different subjects. We
imum sleep depth was also obtained by taking the whole-nightestigated whether thresholding SW% plots is a better way
maximum from each one of the relative-power plots, RSWRs detect such correlations. For comparison, we have computed
and RSWPw. Age and gender effects on all these values wdtgations based on thresholding SWP plots, relative-power
analyzed by ANOVA. Temazepam effects were analyzed usif@SWPs and RSWPw) plots, and manually scored stage
the t-test. The results are summarized in Table I. (R&K) plots. SW%-duration, SWP-duration, RSWPs-duration,

Temazepam was found to reduce maximum sleep depthRSWPw-duration and R&K-duration were defined as the
characterized by both SWP and SW% (bpthalues<0.005), number of minutes with SW% exceeding 7%, SWP exceeding
but not by SW0, RSWPs, or RSWPw (the thgeealues>0.5). 60 (zV)?, RSWPs exceeding 0.49, RSWPw exceeding 0.76,
In both the placebo and the temazepam nights, increased agd R&K exceeding stage 1, respectively. These thresholds
reduced maximum sleep depth as characterized by SWP (battre automatically selected in such a way that the summed
p values<0.001), SW% (bothy values<0.01) and SWO (both (over all subjects and nights) durations were each equal to
p values<0.04), but not by RSWPs and RSWPw (the faur the summed NREM-sleep durations as defined by the R&K
values>0.15). In both the placebo and the temazepam niglpiots (i.e., the total time spent in sleep stages 2, 3 and 4).
females had significantly larger maxima of SWP and SWO (tt&ubjective sleep quality, (SSQ), was defined as the number of
four p values<0.01) but not of SW%, RSWPs, and RSWPwguestions of a 16-item questionnaire (Table 1) answered in
(the sixp values>0.2). favor of “good sleep.” Correlations between temazepam effects

Temazepam affects the total duration of NREM sleefp.e., temazepam—placebo difference) were evaluated using the
as traditionally defined [17] and also improves a subjectisivariate Pearson correlation coefficiept, The temazepam
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effect on sleep quality was found to be significantly correlatedethod of rejecting these artifacts from the analysis. However,
(p = 0.42, p < 0.05) with the effect on SW%-duration, nota considerable advantage of SW% in detecting effects on
with the effects on SWP, RSWPs-, RSWPw-, or R&K-duratiogleep will remain that SW% is computed in the time domain
(the fourp values were 0.22, 0.36, 0.21, and 0.32 respeciveBnd, therefore, offers a much better time resolution. This is
The fourp values>0.1). important when neuronal feedback gain can change rapidly,
such as in sleep apnea patients or in other applications such as
alpha-blocking [10], the detection of K-complexes [29] and the
cycling alternating pattern (CAP) in sleep [30].

SW% is, by definition (16), the fraction of the currently The formal derivation of the analyzer precludes the use of
present slow wave that is continued in the near-future EE@nti-aliasing filters. Therefore, not-modeled high-frequency
Continuation of current activity into the future essentially imsignal generators such as muscle artifacts may bias the results.
plies a temporal feedback mechanism. The fact that we fouAtthough the model-based artifact rejection of paragraph
clear time-of-night variations in SW%, therefore, inevitablyV handles these artifacts very well, not all artifacts will
implies the existence of a slow-wave generating closed lobp rejected. Therefore, more practical experience must assert
in which the feedback gain varies in the course of the nigtwhether or when this is a serious problem. The results discussed
Reasoning based on physiology, neuronal feedback gain v@d@®ve indicate that this was not the case in the present study.
also found [7]-[9] to be the dynamic physiological state rep- Recent physiological evidence [31] shows that different
resenting NREM-sleep depth. These two independent linesftgfquencies within the slow-wave range may point to different
evidence strongly suggest that NREM-sleep depth correspomagchanisms of sleep. Components, the slow componeht (
to the feedback gain of neuronal slow-wave oscillating loopsHz) and the delta component (1-4 Hz), are the result of different

A simple model of this principle suggests that variations ifeedback mechanisms. But both mechanisms have a feedback
SWP are due to variations of sleep-related microcontinuity, again that increases with increasing sleep depth. This may partly
cording to the multiplicative relationship given in (28). Our dataxplain the success of methods, including the microcontinuity
support the model because we indeed found strong correlati@stimator, that roughly cover both frequency bands. Still,
(0.89 to 0.99) between logarithmically transformed whole-niglsecause physiological research suggests the existence of
power and microcontinuity plots (see also Fig. 2). functionally different frequency bands in the slow-wave range,

Our data confirm previously reported effects of agey next step should be to apply the microcontinuity analysis
temazepam and gender on SWP. But only age and temazepsgparately to the two EEG components.
not gender, affected SW%. This suggests that age andn the same reference [31], it was argued that EEG analysis
temazepam affect real sleep depth but gender affects SVgRould take into consideration the actual aspect of waves and, if
through a nonsleep-related (possibly anatomical) procepsssible, their relationship with the state of the cellular aggre-
These results support an independent study [5] suggestgajes of the corticothalamic network” underlying slow waves.
that the gender effect on SWP is not due to a gender effect Bhe microcontinuity estimator is the first method that does both.
physiological sleep depth. As a consequence, microcontinuity allows a physiological in-

These results also suggest that the microcontinuity analytsgpretation: it reflects the degree of activation of the low-fre-
can distinguish sleep-related from nonsleep-related effects @uency neuronal feedback loops that generate the slow waves
SWP. In that case, SW% is a more accurate estimator of sléeghe EEG.
depth than SWP is. This suggestion was confirmed by the fact
that the effects of temazepam on SSQ correlated to SW%-dura-
tion, not to SWP-duration.

Similar to SW%, both RSWP plots should not be affected The authors would like to thank A. Janssen and M. Roessen
by anatomical parameters that do affect SWP. Indeed, genggfo made the recording hardware and software and R. Biemond
had no effect on RSWP-maX|mun_1. Also, SSQ was MOk E. Kemp who made most of the recordings.
strongly correlated to RSWPw-duration than to SWP-duration.

However, the correlation between SSQ and SW9%-duration was
still higher. Also, RSWP-maximum failed to detect the age REFERENCES
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