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Analysis of a Sleep-Dependent Neuronal Feedback
Loop: The Slow-Wave Microcontinuity of the EEG
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Abstract—Increasing depth of sleep corresponds to an in-
creasing gain in the neuronal feedback loops that generate the
low-frequency (slow-wave) electroencephalogram (EEG). We
derived the maximum-likelihood estimator of the feedback gain
and applied it to quantify sleep depth. The estimator computes
the fraction (0%–100%) of the current slow wave which continues
in the near-future (0.02 s later) EEG. Therefore, this percentage
was dubbedslow-wave microcontinuity(SW%). It is not affected
by anatomical parameters such as skull thickness, which can
considerably bias the commonly usedslow-wave power(SWP).

In our study, both of the estimators SW% and SWP were
monitored throughout two nights in 22 subjects. Each subject
took temazepam (a benzodiazepine) on one of the two nights.
Both estimators detected the effects of age, temazepam, and time
of night on sleep. Females were found to have twice the SWP of
males, but no gender effect on SW% was found. This confirms
earlier reports that gender affects SWP but not sleep depth.
Subjectively assessed differences in sleep quality between the
nights were correlated to differences in SW%, not in SWP.

These results demonstrate that slow-wave microcontinuity,
being based on a physiological model of sleep, reflects sleep depth
more closely than SWP does.

Index Terms—Aliasing, EEG, estimator, sleep, temazepam.

I. INTRODUCTION

SLEEP consists of periods of rapid eye movement (REM)
and non-REM (NREM) sleep. The depth of NREM sleep

varies between and within NREM periods. These variations of
NREM-sleep depth are accompanied by synchronous variations
of the amplitude of the low-frequency component of the EEG,
usually called the slow wave.

Because of this, quantitative studies of NREM sleep are com-
monly based on slow-wave power (SWP) [1]–[5]. However, the
SWP as measured through scalp EEG electrodes can also be
influenced by processes that are not related to sleep, such as
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anatomical characteristics of the head. Therefore, effects in the
power plots do not necessarily reflect effects on sleep. For in-
stance, females have twice the SWP of males, but this does not
imply that they really sleep more deeply [5], [6]. This uncer-
tainty also exists when within-subject effects on total duration
of NREM-sleep are studied. The amplitude (or power) thresh-
olds that are involved in the computation of durations depend
also on nonsleep-related processes: the power thresholds corre-
spond to different sleep depths in different subjects.

These nonsleep-related effects can be partly avoided by ap-
plying relative power measures, such as the percentage of the
total power that is in the slow-wave frequency band, or the ratio
of powers in the slow-wave and alpha band. However, it is not
clear how such a ratio would be related to real, physiological,
sleep depth. Also, relative power measures are based on fre-
quency analysis, which implies a rather limited time resolution
when compared to the frequent and abrupt sleep depth varia-
tions that can occur in, for instance, sleep apnea patients.

Some physiological models of NREM sleep [7]–[9], [4]
suggest a different method that would not suffer from these
drawbacks. These models describe how NREM sleep depth is
related to the neuronal mechanism that generates slow waves.
This mechanism is essentially feedback through closed loops
in neuronal networks and/or through the interplay between
ion currents in single cells. It is suggested that NREM sleep
depth modulates the gain of the feedback loops [9]. According
to this model, thesleep-relatedvariations in SWP result from
variations in the feedback gain. Therefore, a direct estimate of
slow-wave feedback gain would be most closely related to real
physiological sleep depth. In particular, this estimate would not
be biased by the nonsleep-related anatomical parameters that
do bias SWP. Also, because the models are in the time domain,
the estimator would not be limited by the time resolution of
frequency analysis.

In this article we describe for the first time the model-based
estimator of the slow-wave-feedback gain in full detail. The fol-
lowing sections enable full understanding and implementation
of both the model and the feedback gain estimator. These can
be applied to any EEG rhythm [10]–[16]. However, the actual
values of sampling intervals, filter frequencies and artifact de-
tection thresholds as given in the present article are specific to
the analysis of slow waves in the EEG.

Preliminary implementations of the algorithm demonstrated
its value in the analysis of EEG components other than slow
waves [10]–[16]. The algorithm was first applied to slow waves
in a study addressing the effects of age and gender in an ex-
tremely healthy population [6]. In order to further illustrate the
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practical value of the estimator, we monitored slow-wave feed-
back gain as well as SWP throughout two nights in 22 subjects
having sleep complaints. We analyzed whether slow-wave feed-
back gain: 1) reflects sleep depth variations that are also visible
as variations in SWP caused by the ultradian rhythm (time of
night), aging, and the use of sleep medication; 2) reflects the
(possibly not-sleep-related) gender effect on SWP. We also com-
pared the results to those that can be obtained by relative SWP
analysis.

An important issue in sleep medicine is the correlation of
subjective measures (as derived from sleep quality question-
naires) with the total duration of NREM-sleep, as computed
by, for instance, thresholding overnight SWP plots. To date,
no such correlation has been found within individuals: the ob-
jectively measured total duration of NREM-sleep does not yet
support the difference between a (subjectively) good and a bad
night in one subject. In our view, this may be partly due to the
fact that these objective measures do not use the information
from the physiological models mentioned above. The analysis
of slow-wave feedback gain, being based on a physiological
sleep model, might show correlations not revealed by more tra-
ditional measures. We have, therefore, also analyzed whether
the subjective difference between the two recorded nights was
correlated with the difference in NREM-sleep duration as com-
puted by thresholding slow-wave feedback gain plots. Since,
in this study, temazepam was taken on one of the nights, this
analysis essentially determines whether those found by objec-
tive measures to be drug responders are also the responders as
determined by subjective measures.

II. THE FEEDBACK MODEL: GENERATION OFSLOW WAVES IN

THE EEG

The derivation of the feedback gain estimator is based on a
simple mathematical model of the slow-wave generating feed-
back system. This model describes three essential characteris-
tics of the above-mentioned physiological models: 1) the exis-
tence of a low-frequency feedback loop in which the feedback
gain is proportional to sleep depth; 2) unpredictable activity
from external sources drives the loop; 3) increased feedback
gain corresponds to larger SWP. These characteristics can be
implemented in various practical mathematical models. Physi-
ological knowledge does not provide clear criteria to select be-
tween these models. Therefore, we have implemented a variety
of models, based on the three above mentioned characteristics.
The models differed in types of low-frequency filters in the feed-
back loop, in random processes driving the filter, and in location
of the feedback gain. We selected the model that most realisti-
cally simulated EEG.

Fig. 1 shows a block diagram of that model. Standard white
noise, , drives a feedback loop containing a resonance
filter, , and a feedback-gain, . This feedback gain
represents sleep depth. The feedback loop produces an output
signal, . The resonance filter passes only the rhythmic (in
this case, the slow-wave) component, , of this output signal.
The feedback gain determines which fraction of this component
actually continues in the near-future output signal. The output

Fig. 1. Model of the neuronal generation of slow-wave EEG. Neuronal-group
activity under the electrode is represented by_u(t). G(f) represents
frequency-selective neuronal feedback pathways that can carry the slow-wave
component,s(t), of this activity to the near-future activity under the same
electrode. Sleep-dependent activation of these pathways is represented by the
feedback gain,p(t). Stronger activation corresponds to largerp(t), which
makes a larger fraction of the slow-wave component continue in the near-future
activity. The external input activity to the system is represented by random
white noise, _w(t). L(f) andx describe how the activity under the electrode
is low-pass filtered and attenuated, respectively, before it is recorded as scalp
EEG,e(t).

signal passes a low-pass filter, , and a not-sleep-related
amplification factor, , before being recorded as scalp EEG,

. A similar model was proposed earlier [16] for the alpha
rhythm in the EEG. Simulations by the model [10], [14], [16]
show a waxing and waning rhythm, similar to the behavior of
narrow-band filtered white noise. Increasing sleep depth was
simulated by increasing while keeping all other parameters
constant. Therefore, the model is stationary except for
which is to be estimated. The simulations were visually nearly
indistinguishable from real EEG.

The resonance filter, , is linear, with the following transfer
function in the frequency domain:

with (1)

where is the complex operator, and Hz and
Hz are the center frequency and bandwidth, respectively. The
resulting 3 dB frequencies of the resonance filter are 0.5 Hz
and 2 Hz. The roll-off at both ends is only 6 dB/octave, which
implies that a considerable part of the signal below 0.5 Hz and
above 2 Hz is also passed. These settings roughly correspond to
the frequency content of slow waves. They also result in sim-
ulated signals and power spectral densities that best resemble
those of actual EEG recordings [14]. Note that , and
all other frequencies are attenuated as well as changed in phase.
The equivalent notation in the complex-frequency
domain reads

with

and

(2)

In all our applications we have , which makes and
complex constants. In the time domain, the resonance filter
is specified by its impulse response function:

(3)
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In the open-loop situation, i.e., , the filter produces the
rhythmic component, , by convoluting the white-noise input
as follows:

(4)

The last part of this equation is a Wiener integral involving in-
crements, , of the standard Wiener process, . The
formal derivative of this process is the white Gaussian noise,

, which is in the first part of the equation.
White Gaussian noise has infinite power and bandwidth, which
would complicate the formal derivation and a straightforward
discretization of the analyzer. The Wiener process has finite
power. Its increments, , are mutually inde-
pendent and simply have a Gaussian distribution with mean 0
and variance [18, chapter 1]. These properties enable simple
and straightforward derivation of the analyzer in paragraph III.
A Wiener integral is formally defined as the limit of approxi-
mating discrete-time sums, in this case as follows [18, chapter
4.3]

(5)

This formulation provides clear suggestions on how to imple-
ment the continuous-time components of the model in discrete
time (Section III). For these two reasons, we have based the
model formulation as well as the derivation of the analyzer on
Wiener increments, . A more detailed and complete dis-
cussion on this subject can be found for instance in [18, chapters
1, 4 and 6.5].

The open-loop power of can thus be derived as follows:

(6)

in which denotes the expected value operator. Note, that the
fourth equality in (6) is true because of the above-mentioned
property of the Wiener increments: the variance of over
an interval equals [18, chapter 4.3].

In the general, closed-loop situation, the filter produces the
rhythmic component, , by convoluting as
follows:

(7)

According to Fig. 1, this rhythmic component is amplified by
a gain factor, , before being added to the new noise input,

, thus producing the new output signal, , of the closed
feedback loop. So, . The equivalent
formulation based on Wiener increments reads

(8)

in which the forward increment is
independent of because the latter results from a causal feed-
back filter accumulating only previous increments: see equation
(5). This does not affect the simulated signals because these re-
sult from convolutions in which the contribution of the most re-
cent increment, , is infinitely small. Physiologically, the
provision makes sense because the neuronal feedback pathways
will surely involve a time delay. Observing is equivalent
to observing the EEG, , because the filter is known.
Therefore, from now on, we designate to be the observa-
tions and (8) is the observations model.

We will now describe some characteristics of the model in
the frequency domain. The closed-loop transfer function from

to depends on . For constant , it reads as
follows in the frequency domain:

(9)

In the model, this transfer function is driven by standard (i.e.,
having a power spectral density of 1) white noise . There-
fore, the power spectral density of the output, , equals

(10)

For (no feedback), the power spectral density is flat. For
, it has an infinite peak at . For any value of , be-

comes infinitely large at very low or very high frequencies, so
the power spectral density at those frequencies equals 1. With

going to , goes to 0 and the power spectral density
monotonously rises to a peak value of . This shows
that our choice of produces only peaks in the power spec-
trum, and no dips. This is consistent with actual EEG power
spectral densities, which also consist of a fairly smooth baseline
spectrum that can show peaks (for instance, at alpha, spindle or
slow-wave frequencies) that are not accompanied by a decrease
of the spectrum at other frequencies. This fact is a major ar-
gument for our particular choice of the feedback filter .
Different filters, such as delay lines or higher-order resonance
filters, can also produce peaks in the spectrum but these are al-
ways accompanied by dips at other frequencies.
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The closed-loop transfer function from to reads

(11)

This transfer function is identical to the open-loop transfer func-
tion of (1), except that the bandwidth is instead of

, and the gain at is instead of 1. Therefore, the
closed-loop power of can directly be deduced from (6). It
equals

(12)

Finally, the output, , of the closed loop passes a first-order
low-pass filter and an unknown constant amplification factor,

, resulting in the EEG, . The factor affects EEG (and
slow-wave) power and represents biological attenuators (such
as the skull), electronic amplifiers, as well as the possibility that
the white noise input is stronger or weaker than standard white
noise. The transfer function of the low-pass filter reads [16]

(13)

where Hz is the dB cutoff frequency.

III. M ODEL-BASEDESTIMATION OF THENEURONAL-FEEDBACK

GAIN: SLOW-WAVE MICROCONTINUITY

The model’s feedback gain, , represents sleep depth. We
will, therefore, quantify sleep depth by estimating the feedback
gain. The discrete-time maximum-likelihood estimator can be
derived as follows. Discrete-time intervals,, are 0.02 s in
the present application (EEG slow waves), corresponding to a
sampling frequency of 50 Hz. This frequency is sufficiently
high for an accurate representation of the slow-wave compo-
nent. Selecting still higher sampling frequencies increases the
risk of bias by unknown technical of physiological high-fre-
quency filters that are not accounted for by the model. The con-
tinuous-time observations, over an interval ,
are sampled with sample counter,, resulting in discrete-time
observations, over an interval

, with . We assume for the mo-
ment (see Section IV) that this interval is short when compared
to the dynamics of , so that . We fur-
ther note that the sampling interval,, is short when compared
to the slow-wave frequencies (being around 1 Hz), so that we
assume that in the interval, .
The discrete-time equivalent of the model is then obtained by
integrating (8) and reads

(14)

in which is the increment
of the standard continuous-time Wiener process, , over the
time increment, , and, therefore, has a Gaussian distribution
with mean 0 and variance. As in the continuous-time model,
the increments are independent of because

is produced by a causal feedback loop while
is defined as a forward increment with respect to .
We finally assume that the initial state, , of the feedback
filter, , is known so that its output, , can be updated
on-line from the input, . The likelihood of

, which is of the observations
over the full interval, given the value of, can be factorized
according to Bayes’ rule [18, Ch. 4.5] into a product of, in this
case Gaussian, distributions

(15)

For the third equality, we have used (14) and the Gaussian dis-
tribution of . The value of that maximizes this likeli-
hood, maximizes the sum in the last line of this equation. There-
fore, the maximum-likelihood estimator,, is the value of for
which the derivative of this sum with respect toequals 0. This
value is

(16)

Substituting from (14) into (16) shows that indeed
converges to , because and are mutually in-
dependent. In Sections IV and V,is expressed as a percentage,

.
Fig. 1 shows how to reconstruct that is required

for the computation of (16). Applying the inverse of , that
is , to the EEG and subsequent integration would give

. The discrete-time equivalent, , is obtained
by applying the bilinear transformation [19], [20, chapters 4.0
and 5.1.3] to . Subtracting subsequent samples of

then results in the following algorithm for obtaining
from the EEG samples, :

with

and

(17)

in which is the prewarped [see (19)].
Fig. 1 also shows how to reconstruct that is also re-

quired for the computation of (16). Applying the inverse of
, that is , to the EEG and subsequent filtering by
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would give . The discrete-time equivalent, ,
is obtained by applying the bilinear transformation to

. The transformed filter for obtaining from the
EEG samples, , reads

with

(18)

in which and are the prewarped and , respectively.
The prewarped frequencies,, in (17) and (18) are computed
from the original frequencies,, as follows [20, pages 208 and
217]

(19)

The reconstructed and , and not
and , are used for the computation of (16). Since the un-
known factor occurs in both the numerator and the denomi-
nator of (16), this does not influence the estimate. For the same
reason, scaling and calibration of the EEG signal is not required.

The estimator of (16) basically computes which fraction of
the present is present in the future increment,

. There is a time delay of between
and . This effect slightly biases the estimator

because, in practice, is not completely constant during
this interval. Extrapolating by into the future re-
duces this bias. This extrapolation must not involve
because that would cause dependency on the white noise com-
ponent of . As mentioned with (16), such dependency
would bias the estimator. Therefore, was es-
timated as follows. First, is computed by the filter
of (18). Then, the same filter is extrapolated byand without
input signal, in order to predict as follows:

(20)

Finally, is estimated by linear interpolation as
follows:

(21)

and replaces in the computation of equation (16).
Equation (21) predicts the slow-wave component produced

by that might enter the next observation, . The
fraction of this component that will actually enter de-
pends on the feedback gain,. Equation (16) estimates which
fraction of the slow wave component continues (through the
feedback loop) into the next observation. This is why we have
named this fraction the slow-wave “microcontinuity.” (SW%)
According to the model, this is an estimate of the neuronalfeed-
back gain, which is related to sleep depth.

In some biomedical research environments, anti-aliasing
measures are taken routinely and unconditionally in appli-
cations in which signals are sampled. We have purposely
not done this, and we want to explicitly state our reasons in
the following. Pre-sampling anti-aliasing filters would color
the noise: they make the mutually independent increments

in depend on previous increments and,
therefore, on . As mentioned earlier, this would bias the
estimator. A similar effect occurs if the sampling frequency
is too high: high-frequency low-pass filters that are present in
any electronic and physiological system would also color the
white noise. In practical applications, such bias by anti-aliasing
filters can be substantial [10], [12, chapter 6.1]. Also, because
any additional EEG rhythms are below 20 Hz, there is very
little power above 25 Hz. The 90% spectral edge is even below
10 Hz [21]. Thus, we did not apply anti-aliasing filters.

This decision is supported by the fact that the formally de-
rived optimal estimator does not include anti-aliasing filtering.
In order to understand this better, we have verified how the an-
alyzer processes frequencies exceeding the Nyquist frequency
(in this application 25 Hz). These frequencies are much larger
than and (1.0 Hz and 1.8 Hz, respectively). At these fre-
quencies, the feedback through hardly contributes to the
output signal and the low-pass filter, , acts as an integrator.
Therefore, the remaining EEG model simply integrates white
noise, , in continuous time. Therefore, the resulting “EEG,”

is a continuous-time Wiener process [18, chapter 4.4]. The
microcontinuity analysis starts with sampling this process and
filtering the samples by equations (17) and (18). Because

, the filter parameters and .
This implies that both filters first compute the discrete-time in-
crements, , and then process these incre-
ments further. These increments are the increments of the con-
tinuous-time Wiener process, , and therefore, by definition,
discrete-time white noise [18, chapters 4.3 and 4.4], which is
exactly limited to the Nyquist frequency. The gain of filter (17),

, exactly compensates the gain of the continuous time
integrator, . Therefore, the standard white noise, , in
the model is replaced by standard discrete-time white noise,

in the analyzer. Both have a power spectral den-
sity of 1. This shows that the first-order roll-off of the contin-
uous-time low-pass filter , followed by the sampling and
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discrete-time filtering, acts as a perfect anti-aliasing filter on the
white noise component.

IV. SMOOTHING, ARTIFACT REJECTION, AND (RELATIVE)
POWER

Equation (16) shows that smoothing must be applied sep-
arately to numerator and denominator of the estimator. Such
smoothing is not essential to the theory: the basic time reso-
lution of the analysis equals the sampling interval (for an ap-
plication, see [10]). In particular, the time resolution of the es-
timator is not limited by the low-frequency content of the slow
waves. However, in the present application, some smoothing can
be applied in order to reduce the noise which is introduced by

, while still preserving the dynamics of . We have tried
several smoothing principles and obtained the best results [6]
with the following recursive smoothers. Theoretically [22], such
smoothers are optimal if represents the state of a Markov
chain. The recursive smoothing procedure is as follows.

Using the reconstructed model signals of (17) and (21), the
summations in (16) were computed over each 1s interval (with
interval counter, ), i.e.,

(22)

These sums were recursively smoothed forward in time, starting
at the beginning of the EEG recording

(23)

and also backward in time, starting at the end of the EEG
recording

(24)

Initial values were set to 0. The contribution of each second of
data, and , to the smoothed results decays by a
factor of at each recursion. Summing the forwardly and
backwardly smoothed parameters, and

, results in a time-symmetric weighted av-
erage at time n over all recorded data. The weight decays expo-
nentially with increasing distance from n. The smoothing effect
becomes weaker with increasing rate. The data in this article
were computed using the rate . For this value of ,
both (forward and backward) smoothers have a window size of

s. That is, data farther than 41 s away
from weigh less than 50% of the data at. For severe sleep
apnea patients, who may enter deep sleep in a few seconds, a
higher rate is probably more appropriate. We have replaced the
summations of equation (16) by these time-symmetric recursive
smoothed parameters. This results in better noise reduction and
preservation of the dynamics of the feedback gain. We have also

multiplied the result by 100 in order to express the estimated mi-
crocontinuity as a percentage

(25)

The smoothed estimate of the power of the rhythmic component
as applied in this article is computed in a similar way as follows:

(26)

This computation of power is rather traditional: the bandpass fil-
tering of (18) from 0.5–2 Hz is followed by the squaring of (22)
and smoothing [Equs. (23), (24), (26)]. It is influenced [see (22)]
by the amplification factor, , which can introduce individual
nonsleep-related effects in the EEG (Fig. 1). For well-smoothed
estimates this influence can be derived from (12). It reads

(27)

This equation shows that the power, SWP, is composed of a
nonsleep-dependent factor, , multiplied by
a sleep-dependent factor, 100%/(100%–SW%). According to
(27), the nonsleep-dependent factor can be estimated at each
second, , from SW% and SWP as follows:

(28)

The automatic artifact rejection algorithm assumes that EEG
activity behaves according to the model and artifacts do not. In
particular, EEG activity should obey model equations (8) and
(12), which implies that (with integrations over 1 s intervals and

being the expectation operator)

(29)

which is independent of the value of . The discrete time
equivalent includes the unknown amplification factor,, and
reads

(30)

Most artifacts do not behave according to the model and have
been found to make differ strongly from

. Therefore, we designed the automatic artifact rejec-
tion procedure as follows. The expression is
computed at each second,. A whole-night histogram of the
obtained values always shows a clear peak, which we interpret
as the expected value of the expression and, therefore, equate
with . During high-frequency artifacts such as EMG the
values obtained are positive and usually exceed by at



KEMP: ANALYSIS OF A SLEEP-DEPENDENT NEURONAL FEEDBACK LOOP 1191

least (they are at least ). During low-fre-
quency artifacts such as moving electrodes the values obtained
are negative and usually exceed by at least
(they are more negative than ). These thresholds at

were determined experimentally in a previous
unpublished study using other recordings. Artifacts are automat-
ically detected when a threshold is crossed. When an artifact is
detected, the inputs, and , to the smoothers of (23)
and (24) are set to zero. This makes these smoothers interpolate
between the adjacent artifact-free periods.

In order to compare our results to those that can be obtained
by relative-power analysis, we computed power spectral
density at a 1-minute time resolution as follows (frequency,,
and minute counter, ). FFT-based power spectral density,

, was computed by 10.24 s intervals and averaged
over six intervals (the last one truncated in order to arrive at
exactly 60 s). Relative SWP plots, RSWPs and RSWPw, based
on a small and a wide slow-wave frequency band respectively,
were computed as follows.

and

(31)

V. SLOW-WAVE MICROCONTINUITY COMPARED TO

SLOW-WAVE POWER: EFFECTS OFTIME OF NIGHT,
AGE, GENDER, AND TEMAZEPAM

In a study [23] of the pharmacodynamics of temazepam (a
benzodiazepine which promotes NREM-sleep duration), EEG
(PzOz derivation) was recorded throughout two nights in 22
subjects. The recorder was a digital telemetric system [24],
[25] with frequency response range (3-dB points) 0.03–1000
Hz, 14-bit sampling at 100 Hz per signal, and a total noise
level of 2- V p-p. The subjects were grouped by age and
gender (F: females, M: males) as follows: 18–34 years (6F,
4M), and 35–78 years (9F, 3M). Each subject took 20 mg
of temazepam on one of the two nights (randomized, double
blind, cross-over). Sleep stages were scored manually, using
additionally recorded signals, and according to the standard
scoring rules of Rechtschaffen and Kales [17].

The slow-wave analyzer automatically monitored at a 1 s time
resolution the SWP (26) and its two components; the sleep-
dependent SW% (25) and the nonsleep-dependent factor (28),
SW0. The result was a SWP, SW%, and SW0 plot for each
recorded night (Fig. 2).

Fig. 2. The seven-hour sleep period of a male, aged 20, under placebo
condition (sleep-wake recording 7141/94). From top to bottom six charts, each
one with solid bars indicating the REM sleep periods. Chart 1: EEG (PzOz),
SWP, in (�V) . Chart 2: EEG slow-wave feedback gain, i.e., SW%, which is
the fraction of the present slow wave that is transferred to the near-future EEG.
Chart 3 (top trace): SW0 in (�V) , the part of the SWP variations in chart 1 that
the model could not predict from SW%. Chart 3 (bottom trace) illustrates that
dynamic attenuation of the EEG amplitude by the square root of SWP (chart 1)
removed all variations from the resulting SWP, SWP~. Chart 4: EEG slow-wave
feedback, SW%~, computed from the thus dynamically attenuated EEG. Note
that despite this attenuation, charts 2 and 4 are identical, which implies that
SW% only depends on EEG shape, not amplitude. Chart 5: neuronal power
variations as reconstructed by model equation (27) from SW%~in chart 4. Note
that charts 1 and 5 are almost identical, which implies that the original neuronal
power variations are almost fully coded in the shape of the EEG. Note also
from the scales of charts 1 and 5 that theabsolutevalues of neuronal power
could not be reconstructed because of the unknown factorx (we assumed
SW0(n) = 1 in the reconstruction). Chart 6: traditional manual classification
(R&K) into (from top to bottom) the six sleep stages: Wakefulness, REM sleep
(bold), drowsiness, and the increasingly deep NREM sleep stages 2, 3, and 4.
Note that removing all power variations from the EEG (chart 3) did not affect
the dynamics of microcontinuity (chart 4). Note also that the model can even
reconstruct the original power variations (chart 5).

Fig. 2 illustrates that the well-known night-time dynamics in
SWP are fully coded in SW%. Charts 2 and 4 illustrate that
SW% depends only on the shape of the EEG, not on amplitude:
chart 2 shows the microcontinuity as computed directly from
the EEG while chart 4 is computed in the same way but after
attenuation of the EEG by the dynamic SWP plot. This attenua-
tion completely removed the power fluctuations from the EEG
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(see chart 3). Still, charts 2 and 4 are identical. This implies
that SW% analysis is indeed independent of the EEG ampli-
tude and that the night-time dynamics in SWP are fully coded
in the microcontinuity (shape) of the EEG. The latter is also
demonstrated by chart 5. This chart shows that the model can
reconstruct the original neuronal-power fluctuations even after
removal of all EEG-power variations!

These illustrations are consistent with the model, which
predicts that sleep-related variations in SWP are caused by
variations in slow-wave feedback, SW%. Objective validation
of this prediction was based on computation of the whole-night
correlation between the SW% and SWP plots in each subject.
The relationship (28) between SW% and SWP is nonlinear,
which would bias the correlation analysis (and also ANOVA
[6]). Therefore, the relationship was first linearized by loga-
rithmic transformation as follows:

(32)

According to the model, the variations in and
ln[(100%–SW% )/100%] should be highly correlated.
In order to test this, the whole-night correlation coefficient
between these logarithmically transformed plots was computed
for each of the 44 recorded nights. The mean, the 95%-con-
fidence interval of the mean (both obtained using the Fisher

-transform) and the range of this correlation coefficient
were found to be 0.961, (0.954 to 0.967), and (0.89 to 0.99),
respectively.

The effects of age and temazepam on SWP are at least partly
due to a real effect on sleep depth [6], [23]. Gender also af-
fects SWP, but probably not sleep depth [5], [6]. In that case,
SW% should only show the effects of age and temazepam. In
order to test this, we analyzed the effects of age, temazepam,
and gender on maximum sleep depth. The moment of maximum
sleep depth was detected from the SWP-plot: it is the moment
where the SWP-plot (for an example, see chart 1 in Fig. 2)
reaches its largest value. Maximum sleep depth is character-
ized by the linearized (see above) values ln[SWP], ln[SW0] and
ln[(100%–SW%)/100%] at that moment. For comparison, max-
imum sleep depth was also obtained by taking the whole-night
maximum from each one of the relative-power plots, RSWPs
and RSWPw. Age and gender effects on all these values were
analyzed by ANOVA. Temazepam effects were analyzed using
the t-test. The results are summarized in Table I.

Temazepam was found to reduce maximum sleep depth as
characterized by both SWP and SW% (bothvalues 0.005),
but not by SW0, RSWPs, or RSWPw (the threevalues 0.5).
In both the placebo and the temazepam nights, increased age
reduced maximum sleep depth as characterized by SWP (both

values 0.001), SW% (both values 0.01) and SW0 (both
values 0.04), but not by RSWPs and RSWPw (the four

values 0.15). In both the placebo and the temazepam night,
females had significantly larger maxima of SWP and SW0 (the
four values 0.01) but not of SW%, RSWPs, and RSWPw
(the six values 0.2).

Temazepam affects the total duration of NREM sleep
as traditionally defined [17] and also improves a subject’s

TABLE I
SIGNIFICANCE LEVELS OF THEEFFECTS OFAGE, GENDER AND TEMAZEPAM ON

WHOLE-NIGHT MAXIMA OF BOTH RSWPsAND RSWPw, SWPAND ITS TWO

COMPONENTS, SLOW WAVE FEEDBACK (SW%)AND NONSLEEP-RELATED

ATTENUATION (SW0). NOTE THAT TEMAZEPAM AND GENDER AFFECTSWP
EXCLUSIVELY THROUGH SW%AND SW0, RESPECTIVELY. AGE SEEMS TO

AFFECTSWP THROUGH BOTH SW%AND SW0

TABLE II
QUESTIONS FORASSESSINGSSQ. THE ORIGINAL QUESTIONNAIRE WAS IN

DUTCH. AFTER EACHPOLYGRAPHIC SLEEP/WAKE RECORDING, THE SUBJECT

ANSWERED EACHQUESTION BY MARKING THE “Y ES” OR THE “NO” BOX. IN
THE EXAMPLE BELOW, THE MARKINGS WERE MADE BY A “PERFECT”

SLEEPER, RESULTING IN THE MAXIMUM SSQOF 16

personal assessment of sleep quality [26], [27]. However,
an intra-subject correlation between the effect on the sub-
jective sleep quality and the effect on the total duration of
NREM-sleep has never been reported. This may be due to the
fact that these durations were commonly computed through
thresholding overnight SWP plots or manually scored sleep
stage plots [17]. Both plots depend on SWP which is also
influenced by nonsleep dependent factors as mentioned in
Sections I, II and IV. Fixed power or sleep stage thresholds then
correspond to different sleep depths in different subjects. We
investigated whether thresholding SW% plots is a better way
to detect such correlations. For comparison, we have computed
durations based on thresholding SWP plots, relative-power
(RSWPs and RSWPw) plots, and manually scored stage
(R&K) plots. SW%-duration, SWP-duration, RSWPs-duration,
RSWPw-duration and R&K-duration were defined as the
number of minutes with SW% exceeding 7%, SWP exceeding
60 ( V) , RSWPs exceeding 0.49, RSWPw exceeding 0.76,
and R&K exceeding stage 1, respectively. These thresholds
were automatically selected in such a way that the summed
(over all subjects and nights) durations were each equal to
the summed NREM-sleep durations as defined by the R&K
plots (i.e., the total time spent in sleep stages 2, 3 and 4).
Subjective sleep quality, (SSQ), was defined as the number of
questions of a 16-item questionnaire (Table II) answered in
favor of “good sleep.” Correlations between temazepam effects
(i.e., temazepam–placebo difference) were evaluated using the
bivariate Pearson correlation coefficient,. The temazepam
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effect on sleep quality was found to be significantly correlated
with the effect on SW%-duration, not

with the effects on SWP, RSWPs-, RSWPw-, or R&K-duration
(the four values were 0.22, 0.36, 0.21, and 0.32 respecively.
The four values 0.1).

VI. CONCLUSION

SW% is, by definition (16), the fraction of the currently
present slow wave that is continued in the near-future EEG.
Continuation of current activity into the future essentially im-
plies a temporal feedback mechanism. The fact that we found
clear time-of-night variations in SW%, therefore, inevitably
implies the existence of a slow-wave generating closed loop
in which the feedback gain varies in the course of the night.
Reasoning based on physiology, neuronal feedback gain was
also found [7]–[9] to be the dynamic physiological state rep-
resenting NREM-sleep depth. These two independent lines of
evidence strongly suggest that NREM-sleep depth corresponds
to the feedback gain of neuronal slow-wave oscillating loops.

A simple model of this principle suggests that variations in
SWP are due to variations of sleep-related microcontinuity, ac-
cording to the multiplicative relationship given in (28). Our data
support the model because we indeed found strong correlations
(0.89 to 0.99) between logarithmically transformed whole-night
power and microcontinuity plots (see also Fig. 2).

Our data confirm previously reported effects of age,
temazepam and gender on SWP. But only age and temazepam,
not gender, affected SW%. This suggests that age and
temazepam affect real sleep depth but gender affects SWP
through a nonsleep-related (possibly anatomical) process.
These results support an independent study [5] suggesting
that the gender effect on SWP is not due to a gender effect on
physiological sleep depth.

These results also suggest that the microcontinuity analysis
can distinguish sleep-related from nonsleep-related effects on
SWP. In that case, SW% is a more accurate estimator of sleep
depth than SWP is. This suggestion was confirmed by the fact
that the effects of temazepam on SSQ correlated to SW%-dura-
tion, not to SWP-duration.

Similar to SW%, both RSWP plots should not be affected
by anatomical parameters that do affect SWP. Indeed, gender
had no effect on RSWP-maximum. Also, SSQ was more
strongly correlated to RSWPw-duration than to SWP-duration.
However, the correlation between SSQ and SW%-duration was
still higher. Also, RSWP-maximum failed to detect the age
and temazepam effects that were detected by SW%-maximum.
Inspection of the plots showed that the superiority of the
SW% measure is partly due to the relatively high sensitivity
of RSWP to low-frequency electrode artifacts that are caused
by movements of the subject. In contrast, the denominator,

, of the SW% estimator uses the phase
information in the EEG. This makes the analyzer respond
differently to slow waves than to low-frequency artifacts, even
when the two have indistinguishable power spectral densities.
Additionally, the model-based artifact detector discussed with
(30) was found to reject such low-frequency and other artifacts
very well, as was already discovered in earlier studies: see
for instance Fig. 3 in [13] and “the synchronization model”
in Fig. 3 in [28]. RSWP measures may also improve by some

method of rejecting these artifacts from the analysis. However,
a considerable advantage of SW% in detecting effects on
sleep will remain that SW% is computed in the time domain
and, therefore, offers a much better time resolution. This is
important when neuronal feedback gain can change rapidly,
such as in sleep apnea patients or in other applications such as
alpha-blocking [10], the detection of K-complexes [29] and the
cycling alternating pattern (CAP) in sleep [30].

The formal derivation of the analyzer precludes the use of
anti-aliasing filters. Therefore, not-modeled high-frequency
signal generators such as muscle artifacts may bias the results.
Although the model-based artifact rejection of paragraph
IV handles these artifacts very well, not all artifacts will
be rejected. Therefore, more practical experience must assert
whether or when this is a serious problem. The results discussed
above indicate that this was not the case in the present study.

Recent physiological evidence [31] shows that different
frequencies within the slow-wave range may point to different
mechanisms of sleep. Components, the slow component (1
Hz) and the delta component (1–4 Hz), are the result of different
feedback mechanisms. But both mechanisms have a feedback
gain that increases with increasing sleep depth. This may partly
explain the success of methods, including the microcontinuity
estimator, that roughly cover both frequency bands. Still,
because physiological research suggests the existence of
functionally different frequency bands in the slow-wave range,
a next step should be to apply the microcontinuity analysis
separately to the two EEG components.

In the same reference [31], it was argued that EEG analysis
“should take into consideration the actual aspect of waves and, if
possible, their relationship with the state of the cellular aggre-
gates of the corticothalamic network” underlying slow waves.
The microcontinuity estimator is the first method that does both.
As a consequence, microcontinuity allows a physiological in-
terpretation: it reflects the degree of activation of the low-fre-
quency neuronal feedback loops that generate the slow waves
in the EEG.
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